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Abstract—An experimental and numerical investigation was made of laminar natural convection flow of
air in a vertical channel with a single obstruction. In the experimental study, optical techniques were used
to obtain measurement of both quantitative data (heat fluxes and temperatures) and qualitative data (flow
visualization). Only uniform wall temperature (UWT) boundary conditions were investigated exper-
imentally. In the numerical study, a general purpose, finite element computer code called NACHOS was
used. Thermal boundary conditions, uniform wall temperature (UWT), and uniform heat flux (UHF) were
investigated numerically. The experimental and numerical results were in close agreement. The results
indicate that for UWT boundary conditions the presence of an obstruction reduces the average Nusselt
number by 5% at a Rayleigh number of 10 to about 40% at a Rayleigh number of 10. It is also noted
that the location of the obstruction along the wall affects the rate of heat transfer. Moving the obstruction
away from the entrance towards the exit reduces the average heat transfer rate for the channel. For UHF
boundary conditions, the maximum temperature (which occurs at the intersection of the top edge of the
obstruction and the wall) is only 4% higher than the maximum temperature for an unobstructed channel
(which occurs at the exit of the channel).

1. INTRODUCTION

STEADY-STATE natural convection flows in vertical
channels are of interest in a number of engineering
applications. One of these is the natural convection
cooling of electronic cabinets containing circuit cards
which are aligned to form vertical channels. The
importance of heat transfer considerations in the
design of electronic equipment has been reviewed by
Aung and Chimabh [1], Jaluria [2], and Kraus and Bar-
Cohen [3]. Many diverse flow configurations are of
interest in electronic cooling applications. The most
important of these configurations is the vertical chan-
nel. Laminar, natural convection heat transfer in ver-
tical channels has been investigated theoretically (on
the basis of boundary layer equations), as well as
experimentally. Representative contributions to the
analytical literature on the subject have been made by
several investigators. Engel and Mueller [4) analyzed
the development of natural convection in channels of
finite length for a wide range of Prandtl and Rayleigh
numbers for both constant wall temperature and con-
stant wall heat-flux boundary conditions. Bodoia and
Osterle [5] investigated the development of free con-
vection in an isothermal vertical channe! by using the
finite-difference method to numerically integrate the

boundary layer equations. Aung et al. [6] investigated
numerically and experimentally the development of
free convection heat transfer in vertical channels with
asymmetric heating. They considered both thermal
boundary conditions of uniform wall heat fluxes and
uniform wall temperature. Miyatake et al. (7] analyzed
numerically the natural convection heat transfer
between two vertical parallel plates where uniform
heat flux is applied to one plate while the other is
thermally insulated. In another study, Miyatake and
Fuijii [8] analyzed the same problem with one plate
isothermally heated and the other thermally insulated.
Aung et al. [9] studied numerically and experimentally
natural convection cooling of arrays of vertically ori-
ented circuit cards, aligned to form vertical channels
or ducts. Coyne [10] investigated the same problem
analytically. This analysis involves the calculation of
steady-state, laminar, two-dimensional parabolic flow
in vertical channels. Kettleborough [11] studied
numerically the transient laminar free convection in a
heated vertical channel. Nakamura er al. [12] per-
formed a numerical analysis of the problem studied
by Kettleborough, without using the boundary-layer
approximation. Burch et al. {13] used a finite-differ-
ence procedure to investigate the problem of laminar
natural convection between finitely conducting ver-

1121



1122

S. A. M. Sa and R. J. KRANE

NOMENCLATURE

AR aspect ratio of the channel, b/L 15} y-component of velocity

b channel width v dimensionless y-component of velocity,

C,  specific heat of fluid ob?/a

g magnitude of the acceleration due to X,y spatial coordinates, see Fig. 4.
gravity

Gr  Grashof number, gh(T,, — T, )b*/v?

* H 41,2

Gr qulﬁed Grashof nuxpt')er, gbg.bvK Greek symbols

K fluid thermal conductivity e .

L channel height * thermal dlﬂ'usu{xty . .

I obstruction height from channel B thermal expansion coefficient of fluid

! entrance, sec Fig, | 0 dimensionless temperature,
P motion pressure (T-T)/(Tu=Ts,) for
P dimensionless pressiire g dimensionless temperature,
P ' (T—T.,)/(q.blk) for UHF

(P—P,)gBpo(AT)L for UWT . 0 di onl .

P*  modified dimensionless pressure max  Glmension‘ess maximum temperature,

’ (Tmu— m)/(qwb/k) fol' UHF

(P—Pe)Klgboq.bL for UHF dynamic viscosity of fluid

P,  hydrostatic fluid pressure H YNAmic VISCe yf .

Pr  Prandtl number, o/a v kmet'lc vxts.cos.lty of fluid

I wall heat flux p density of fluid.

F obstruction radius, see Fig. 1

Ra  Rayleigh number, Pr Gr

Ra* modified Rayleigh number, Pr Gr* Subscripts

Ra’ Rayleigh number, Ra AR i refers to one of the vertical walls of the

T fluid temperature obstructed channel

AT T,-T, max maximum value

i x-component of velocity w wall value

u dimensionless x-component of velocity, x value at distance x from channel entrance
ab*laL o0 indicating the conditions at infinity.

tical plates. Carpenter et al. {14] investigated numeri-
cally the interaction of radiation with developing free
convective heat transfer in vertical parallel plate chan-
nels with asymmetric heating. Aihara [15] studied the
effect of inlet boundary conditions on the numerical
solutions of free convection flow in vertical channels.
The three-dimensional buoyancy-induced flow in a
duct has been analyzed by Karki and Patankar [16]
and Ramakrishna et al. [17]. Similar analysis for ver-
tical circular tubes has been carried out by Davis and
Perona [18], Kageyama and Izumi [19], and Dyer [20].

The original experimental study of natural con-
vection between parallel plates is that of Elenbass [21].
His results are often compared with analytical results
for parallel plate channels. Natural convection heat
transfer measurements for vertical channels with iso-
thermal walls of different temperature are presented
in the work of Sernas et al. [22]. A recent experimental
study by Sparrow and Bahrami [23] encompasses
three types of hydrodynamic boundary conditions
along the lateral edges of the channel. Akbari and
Borges [24] solved numerically the two-dimensional,
free convective, laminar flow in the Trombe wall chan-
nel, while Tichy [25] solved the same problem using
an Oseen-type approximation. Levy et al. [26] address
the problem of optimum plate spacings for laminar

natural convection flow between two plates. Churchill
[27], using the theoretical and experimental results
obtained by a number of authors for the mean rate of
heat transfer in laminar buoyancy driven flow through
vertical channels, developed a general correlation
equation for these results. Sparrow and Prakash [28]
and Prakash and Sparrow [29] dealt with natural con-
vection in vertical arrays of interrupted parallel plates.
Aung et al. [9] attempted to derive a general
expression to account for the effect of flow restriction,
while still considering the governing equation to be
parabolic. Flow restrictions encountered in Aung’s
study are in the form of staggered cards and baffles.

It can thus be concluded that unobstructed natural
convection channel flows have been extensively inves-
tigated and that many aspects of these flows are now
well understood.

When obstructions (protrusion from a channel
wall) are located inside the channel, as encountered
in many practical applications, the problem becomes
elliptic. Very little is known of the natural convection
phenomena in such complex flows [30]. Hence, the
present study will be concerned with a combined
experimental and numerical investigation of the
laminar natural convection flow of air in a vertical
channel with a single obstruction.
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2. STATEMENT OF THE PROBLEM

The present study considers the two-dimensional,
steady-state, laminar natural convection flow of a
Newtonian fluid that occurs in the obstructed vertical
channel shown in Fig. 1. A detailed statement and
solution procedures of the problem are given in ref.
[31]. The flows are assumed to be such that they can be
adequately modeled by the Boussinesq approximation
[32, 33] and that compression work, viscous dissi-
pation, and radiative transport are negligibly small.
Thus, the governing equations are given as follows:

conservation of mass

du 00
=0 1
Newton’s second law
o o0 _ 1 0P
“ox TV T T p, 0%
?a 0%
+V0 <a 22 + 5)72) +gﬂO(T Tco) (2)
8 8 1 oP 9% az') 3
TG T T # T
conservation of energy
aT aT 62T a*T

where i and & are the velocity components in the *-
and j-directions, T the temperature, P the ‘motion
pressure’ (defined as the actual pressure in fluid less
the pressure when the fluid is at rest at uniform tem-

T = Tw = fconst)
or

§ = §w = (const)
/ Tw> Te
3
9
W3 b
X
i L~
To

FiG. 1. Geometry of the obstructed channel considered in
this investigation.
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perature, To), ¢ the magnitude of the acceleration due
to gravity and p,, vo, o C,,, and K, are, respectively,
the fluid density, kinematic viscosity, coefficient of
thermal expansion, constant pressure specific heat,
and thermal conductivity of air all evaluated at some
reference temperature, T,.

The boundary conditions for these equations are
given by

a=0=0
and T = T,(=const.)
or ¢ =gq,(=const.)

forj=0 and 0< < (L,-7
fory =0 and (L, +f)< x<L
fory = /F*—(L,=%? and (L, ~A) S £ < (L, +7)
(5)
U=0=0
and T = T, (=const.)
or ¢=gq,(=const.)
forj=b and (0<X<L) (6)
=0 h
on -
—P+[.t—i=0 r fori=L and (0<7<b)
7
aTjox=0  J 0
=0 7
ou ~ .
_F+“E=0 forx=0 and (0<F<b).
_ (®)
T=T,

In the above boundary conditions, the total stress
or traction (7,,) normal to the boundary at the channel
entrance and exit and the heat flux (g,) normal to the
boundary at the channel exit are prescribed equal to
zero. These boundary conditions are not required to
be explicitly enforced at each node along the entrance
or the exit when using the finite element algorithm.
Instead they are naturally enforced through the
elemental surface integrals generated by the method
of weighted residuals (MWR) formulation of the finite
element algorithm.

3. NUMERICAL STUDY

The boundary value problem outlined in Section 2
is too complicated for exact solution. Hence, one must
resort to the use of a numerical method to obtain a
solution for this set of coupled, non-linear, elliptic
partial differential equations.

In the present study, the numerical analysis was
carried out using a general purpose finite element
computer code called NACHOS. The NACHOS com-
puter code is a general purpose computer program
designed for the solution of two-dimensional, incom-
pressible fluid dynamic problems. The program capa-
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bilities and organization and the derivation of finite
element equations on which NACHOS is based have
been described in sufficient detail elsewhere [34, 35]
and will not be repeated here. However, for the sake
of completeness, two essential parts of the NACHOS
code (the element library and the solution procedures)
will be described.

The elements included in NACHOS consist of iso-
parametric and subparametric quadrilaterals and tri-
angles. Within each of these elements, the velocity
components and temperature are approximated using
biquadratic basis functions; pressure is given by a
linear approximation. For the analysis of steady-state
problems, iterative solution procedures are used.
Transient problems are analyzed using a modified
Crank-Nicholson procedure.

For the analysis of the obstructed channel outlined
in Section 2, a non-uniform mesh of 190 quadrilateral
elements was employed. The elements were con-
centrated near the obstruction and wall boundaries.
The computations were made using iterative solution
procedures provided in NACHOS. Convergence is
defined to have been obtained when the maximum
change in temperature is less than 0.5%. As required
by NACHOS code, the calculations were actually per-
formed in terms of physical variables.

4. COMPUTATIONAL MATRIX

To set up a computational matrix, equations
(1)~(4) outlined in Section 2 are now expressed in
terms of the following dimensionless variables and
parameters:

b’ ob x y
WSS VT YSLEYSh
r=-£—; L,=§L—'; Pr=£. 0)
For the UWT channel
g (I-T.)
(T.-T,)
and
pa_ P
9Pp(T,~T,)L
while for the UHF channel
g I-T.)
(g.b/k) -
and
Pr
~ 9BpgubL’
The resulting equations are :
conservation of mass
du dv -0 (10)

xtey
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Newton’s second law

ooy mel2)| - 2]
| e 5]

(D] -n(2)2
(& E-5] o

energy conservation
06 + o0 b ’ 320 + %0
“ox Uay axl" 9y?

where the Rayleigh number, Ra, is given by

(13

T,~T. )b
Ra=PrGr= PrEgL"’—v—z—?Z’—
for the UWT case; or
Ra < ﬁyqo;c
for the UHF case.

The boundary conditions for equations (10)-(13)
are

u=v=0
and § =1
or 80/dy = —
fory=20 and 0<x<g (L.—r)
fory=20 and (L, +n<x<
fory = (L/B)/(r*~ (L, —x)?) and
Li-n<x<(L,+r) (14)
u=v=0
and 6 =1 y=1 and 0<x<1) (15
or 00/dy=—1 :
v=_0
b\ 1 du
—P+ (Z)Raa‘
80/ox =0
for x=1 and O0<y<1) (16)
v=_0
b\ 1 du
—P+( )Eaa—o
0=0
for x=0 and (0<y<1). (17
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From equations (10)—(17), the dimensionless pa-
rameters of interest in the problem are the Rayleigh
number (Ra), the dimensionless distance of the
obstruction center line above the bottom of the chan-
nel (L), and the dimensionless obstruction radius (r).
The numerical calculations were performed for 31
different cases. Nine of these cases were run for the
unobstructed channel (r = 0); of which eight cases
were for the constant wall temperature boundary con-
dition and one case for the uniform wall heat flux.
The solutions for these cases were obtained for com-
parison with those of other authors in order to verify
the code and the accuracy of the numerical procedure.
Twenty-one of the remaining 22 cases were run for
the obstructed channel (r = 0.091) with the uniform
wall temperature boundary condition ; one case was
run for the obstructed channel with the uniform heat
flux boundary condition. The cases for the obstructed
channel were performed since it is the primary interest
of the present study. The computational matrices are
shown in Tables 1 and 2.

Table 1. Computational matrix for cases with uniform wall
temperature boundary conditions

Unobstructed Obstructed channel
channel (r =0.091)
Ra’ Ra L, AR
3.5x10° 6.8x 10 0.50 0.1364
0.1818
6.4 x10? 1.3x 102 0.50 0.1364
0.1818
0.2727
1.0x 10* 3.4x10° 0.50 0.1364
0.1818
0.2727
2.5x10° 1.0 x 10? 0.50 0.1364
0.1818
0.2727
5.5x10° 2.6x10° 0.50 0.1364
0.1818
0.2727
1.0 x 104 6.0x10° 0.50 0.1818
0.2727
1.8x10* 2.0x10* 0.50 0.2727
— 5.0x 10* 0.50 0.3636
20x10° 9.0x 102 0.25 0.2182
— 9.0x 102 0.50 0.2182
— 9.0x 10?2 091 0.2182

Tabie 2. Computational matrix for cases with uniform heat
flux boundary conditions

Obstructed channel
(r = 0.091)
Unobstructed channel
Ra’ Ra L, AR
5.0x 102 23x10° 050 02182

AT 33;6-F
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5. EXPERIMENTAL STUDY

The objectives of the experimental investigation
were:

(1) To characterize qualitatively (through flow visu-
alization) and quantitatively (through optical
measurements) the structure of the natural convection
flow field in air in a two-dimensional, isothermal chan-
nel with a single obstruction.

(2) To check by direct comparison with exper-
imental measurements the accuracy of the numerical
solutions. A detailed description of the experimental
apparatus, instrumentation, and flow visualization is
given in ref. [31]. The experiments were performed for
an obstructed vertical channel of L, = 0.5, r = 0.091,
with AT = 30 K and values of Ra that ranged from
10% to 10* (Fig. 1). For each experiment, the following
steps were performed.

(a) Interferograms were made with a Wollaston
Prism Interferometer (WPI) [36-38]. The local aver-
age heat transfer coeflicients were determined by read-
ing these interferograms. A reproduction of one is
shown in Fig. 2.

(b) A flow visualization test was performed and the
results were recorded.

(c) Structural (plate and enclosure wall) tem-
perature and air temperatures in the enclosure and
the laboratory were recorded.

FiG. 2. Wollaston prism interferometer fringe pattern.
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FiG. 3. Mach-Zehnder interferometer infinite fringe pattern.

(d) Mach-Zehnder Interferometer (MZI) inter-
ferograms were made [39] in the infinite fringe setting,
producing a fringe pattern to represent the isotherms.
A reproduction of one of these interferograms is
shown in Fig. 3.

(e) A Mach-Zehnder Interferometer (MZI) inter-
ferogram was made [39] in the wedge fringe setting.
Each interferogram was recorded photographically

'/"Z"///Ilm. 4 e

FIG. 4. Mach-Zehnder interferometer wedge fringe pattern.
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and a reproduction of one is shown in Fig. 4. The
temperature distribution in the channel was deter-
mined from the interferogram.

The estimated uncertainty associated with the
experimental values of the heat transfer coefficients
(heony) is approximately 19% [31], while the one associ-
ated with the experimental values of temperature is
0.44°C [31].

6. RESULTS AND DISCUSSION

Results were obtained from the numerical solution
for air for both uniform wall temperature and uniform
wall heat flux conditions for all the cases shown in
Tables 1 and 2. Results were also obtained for these
cases from the experimental data for air for the uni-
form wall temperature condition. The solutions for
these conditions in the different cases are discussed
individually in the following sections (Sections 6.1 and
6.2).

6.1. Uniform wall temperature

For the unobstructed channel (r = 0) with UWT
boundary conditions, typical local heat transfer
coefficients and average Nusselt number (Nu) cal-
culations were carried out. In Fig. 5, Nu is plotted
against Ra for Pr = 0.72, and a comparison is made
between the numerical results of this investigation, the
numerical work of Bodia and Osterle [5], the exper-
imental work of Elenbass [21], and the present exper-
imental work. The comparison shows excellent agree-
ment (within an average difference of 3%). The
experimental results are systematically low.

For the obstructed vertical channel with isothermal
walls, solutions were obtained for the local Nusselt
numbers (Nu,). Figure 6 shows a comparison between
local Nusselt numbers from the numerical solutions
and those obtained from the experimental data using
the Wollaston Prism Interferometer. There is close
agreement between the theoretical and experimental
results, except near the entrance to the channel
(x/L <0.1).

At lower values of the Rayleigh number (Ra). the
effect of the obstruction on heat transfer from the
unobstructed wall is shown by the curve of local Nus-
selt numbers (Vu,) along the wall. As can be seen from
Fig. 6, at a point along the wall, the local Nusselt
number (Nu,) increases with distance up the wall, then
decreases and then increases again. The same trend
can be observed for the obstructed wall curves for all
Rayleigh numbers (Ra) [31]. The lowest values of the
local Nusselt number (Nu,) are obtained at the two
intersections between the obstruction and the wall. As
the velocity of the flow increases in the vicinity of the
obstruction, the heat transfer coefficient increases to
a maximum value and then decreases further up the
channel where the velocity decreases to a minimum
value and then increases again.

The average Nusselt numbers (Vu) from the
numerical solution as well as those obtained from the
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FiG. 5. Comparison between the present solution and those of Bodoia and Osterle [5] and Elenbass [21]
for the unobstructed channel.

experimental data are plotted against the Rayleigh
number (Ra) (on a log-log plot) for different aspect
ratios (4R) in Fig. 7. The numerical results and the
measurements are seen to agree within an average
deviation of 5% with a maximum deviation of 6.25%.
There are no experimental data points at lower Ray-
leigh numbers (Ra). To obtain lower Rayleigh num-
bers (Ra), either the temperature difference (AT) or
the distance between the two vertical plates should be
decreased. A small temperature difference will result

in very small fringe shifts which will be difficult to
measure and because of the obstruction size the dis-
tance between the plates can only be decreased to a
certain value. Because of these two constraints, exper-
imental data points were not taken at lower Rayleigh
numbers (Ra).

From the non-dimensional governing equations
and boundary conditions, it can be seen that the non-
dimensional parameters are the Rayleigh number
(Ra), the aspect ratio (4R), the obstruction size (r),

r = 009
L1= 0S
AR = 02727 4
Ra = 2x10
a
o
Momericst’
unebstructed channel
TS beth walls
s obstructed channel
= ~————— obstructed wall
----- wnshairucted wall
Exparimental
= X obstructed wall
s 2
~
]
7]
2 s
> 37
«<
8
-
2
o~
a
P T T T LJ
0.00 0.20 0.40 0.60 0.80 1.00

DISTANCE ALONG WALL (X/1)

FiG. 6. Comparison of numerical and experimental results for the local Nusselt number (Nu,).
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F1G. 7. Comparison of the computed and measured Nusselt numbers for the obstructed channel.

and the obstruction location (L,). For constant r and
L,, the average Nusselt number (N1) will be a function
of the Rayleigh number (Ra) and the aspect ratio
(4R). Figure 7 shows that as the Rayleigh number
increases the effect of the aspect ratio (4 R) decreases.
This can also be observed from the non-dimensional
form of the governing equations by noting that the
aspect ratio term multiplies the terms which can
reasonably be expected to be relatively small, e.g. the
term in the energy equation representing conduction
in the streamwise (x) direction. As the Rayleigh num-
ber (Ra) decreases the effect of the aspect ratio
increases. This is to be expected, because for lower
Rayleigh numbers the flow approaches a fully
developed channel flow.

Since one of the primary objectives of this research

is to study the effect of obstruction on natural con-
vection flows in vertical channels, the average num-
bers (Nu) from the numerical solution for both unob-
structed and obstructed channels are plotted in Fig. 8
against the Rayleigh number (Ra’), which is defined
as (Ra AR). The curve for the unobstructed channel
shown in Fig. 8 is taken from the study of Churchill
and Usagi [3]. This curve represents the three flow
regimes (fully developed, transition, and isolated ver-
tical flat plates) for the unobstructed channel, while
the one for the particular obstructed channel con-
sidered represents only two flow regimes (transition
and isolated vertical plates). If the obstructed channel
is longer, the fully developed regime should also be
present. A comparison of these curves shows that
the presence of the obstruction causes a significant

s? ,/”

. AR = 0.2727

- AR = 0.1818 obstructed flows.
3 AR = 01364
]

12 ]

T

29 r =009 | For all obstructed
E L1 = 0.50 flows.

N

Ls AREASAL LS LR LA AL LB B ALLLS T TRy L LA B AASS)

o ! v w 0 105

F1G. 8. Comparison of the computed average Nusselt numbers for the obstructed and unobstructed channel
flows.
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reduction in the Nusselt number in the transition flow
regime for the obstructed channel. It ranges from
about 5% at a Rayleigh number of 10* to 40% at a
Rayleigh number of 10. This is caused by the
reduction of flow area due to the presence of the
obstruction. Although the reduction in the cross-sec-
tional area of the channel increased the velocity of the
flow around the tip of the obstruction and thereby
increased the local heat transfer rate in that area, this
does not compensate for the reduced flow rate due to
area reduction. The regions of recirculating flow
which are formed above and below the obstruction
also affect the heat transfer, since the heat is trans-
ferred across the recirculating regions by conduction
only. The regions of recirculating flow at the bottom
of the obstruction are usually quite small and they are
detected in the numerical results by examining the
streamline values at those nodes. The experimental
observations of these circulating flow regions provide
a similar trend to the numerical observations.

The computed streamlines and isotherms for the
same case are shown in Fig. 9. From the streamlines,
it can be seen that the density of the streamlines
increases in the region around the tip of the obstruc-

r o= 0.09
L1=z05

AR = 0.2727

{a) streamlines

{b)

isotherms

FiG. 9. Computed streamlines and isotherms for Ra =
2.0x 104

FiG.
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tion, owing to the reduction of the channel’s cross-
sectional areas. Hence, the flow speeds up in this
region. From the isotherm plots [31), it can be seen
that in the case of a very large Rayleigh number, a
boundary layer is formed on each plate. Figure 3
shows a reproduction of the Mach-Zehnder inter-
ferogram and illustrates how fringe lines map out
constant temperature lines (isotherms). Physical
observations of streamlines through flow visualization
and of isotherms through interferograms (in the infi-
nite fringe setting) show a good qualitative agreement
with the numerical results.

The computed temperature profiles from the
numerical solution at x/L = 0.5 and 1 are indicated
in Fig. 10. It can be seen from Figs. 43—46 of ref. [31]
that as the Rayleigh number increases the minimum
temperature at these two planes (x/L = 0.5 and 1)
decreases and the minimum also shifts to lower values
of x/L since the boundary layer thickness decreases
as x/L decreases.

The computed velocity profiles from the numerical
solution at x/L = 0, 0.5 and'l are indicated in Fig. 11.
It can be seen that the entrance velocity profile appears
to be parabolic when the entrance velocity distribution
is determined by applying the natural boundary con-
dition. The maximum velocity occurs at mid-plane
(x/L = 0.5) owing to the reduction of the channel’s

cross-sectional area. As the Rayleigh number
increases, the maximum velocity in the channel
increases as shown in Figs. 47-50 of ref. {31].
Figure 12 shows a comparison between temperature
profiles obtained numerically and experimentally. The
measurements and the numerical results are seen to

agree within an average deviation of 6% and
maximum deviation of 10%.

¢ =009
11 = 0.50
AR = 02727
Ra = 2 x 104
8
- =T
\ x/L
] — A
H —emau 05 !
o 1 e——
3| \ 10 ’;
g \ !
3 { !
< \‘ ,’
-4
B 1 ]
g o “ ]
b ! 1
- 1 1
o \ :
% 2 3 /
-3 H i
1 )
1 1
\ [
1 J
£ \
2~ \‘ //
AY ’
\ 4
\ ’/'
g Moo’
+ ¥ v
“0.00 020 0.40 0.60 0.80 100

DIPENSIONLESS DISTANCE ACROSS
THE CHANNEL (Y/B)

10. Transverse temperature distributions in the
obstructed channel.
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11. Transverse velocity distributions in the obstructed
channel.

Finally, in summary, the presence of an obstruction
in the channel causes the vertical flow to increase near
the obstruction and the surface area on the obstructed
wall to increase (both should increase the heat transfer
rate). However, the average Nusselt number
decreased when compared to that for the unob-
structed channel. This is due to the reduction of mass
flow rate and the existence of the regions of recir-
culating flow caused by the presence of the obstruction
in the channel.

For the obstructed vertical channel with isothermal
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FiG. 12. Comparison between the computed and measured
temperature at x/L = 0.5 for the obstructed channel.
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Fi1G. 13. Variation of local Nusselt number with elevation in
channel wall for different values of L,.

walls (r = 0.091) and L,/L = 0.25, 0.5, and 0.91 the
numerical solutions were obtained for the local and
average Nusselt numbers and the mass flow rates.
These values were compared to examine the effect on
heat transfer rates of moving the obstruction along
the wall. The comparison is shown graphically in Figs.
52 and 53 of ref. [31]. From these figures [31] it can be
seen that, for the obstructed channels, as the value of
L,/L increases (or the obstruction is moved away
from the channel entrance), both the average Nusselt
number and the mass flow rate decrease. As expected,
both of these values are less than those obtained
for the unobstructed channel. The question which arises
is: “Why should the Nusselt number decrease as
L,/L increases?”

In an attempt to find a reasonable answer, the local
Nusselt number (Nu,) along the obstructed walls is
plotted in Fig. 13, and the isotherms for L,/L = 0.25,
0.5, and 0.91 are shown in Fig. 14. It can be seen from
Fig. 13 that the maximum values of the local Nusselt
number (Nu,) near the obstruction decrease as L,/L
increases. From Fig. 14, it can be noted that as L,/L
increases, the temperature at the channel exit plane
increases. It can also be noted for this figure that as
L /L decreases, the boundary layer thickness at the
channel entrance decreases and, hence, the tem-
perature gradient at the wall increases as L,/L
decreases. Therefore, the Nusselt number, which is a

function of temperature gradient, increases as L,/L
decreases.

6.2. Uniform wall heat flux

For the vertical channel with uniform heat flux,
solutions are obtained for heat flux values of 13 W
m~2. Computed temperature distributions along the
walls are shown in Fig. 15. The maximum temperature
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FiG. 14. Computed isotherms for Ra = 9 x 10? and different values of L.

along the two walls of the obstructed channel occurs e :;ﬂ
at the corner at the top of the obstruction. This is AR ~ 0.202
expected because of the region of recirculating flow at R x23x W

that location. The maximum wall temperature in the
obstructed channel is, however, only about 4%
greater than the maximum temperature in the unob-
structed channel. This is not a significant difference.

7. CONCLUSIONS

Natural convective heat transfer in parallel plate
vertical channels in air, with and without an internal
obstruction, has been studied numerically and exper-
imentally for a Prandtl number of 0.72 and over a
range of Rayleigh number from 102 to 10%. Two ther-
mal conditions of the parallel walls are considered:
uniform wall temperature (UWT) and uniform heat
flux (UHF). A comparison of the average Nusselt
number with those reported by other authors shows
close agreement.

The results for the obstructed channel with the
UWT boundary condition and L, = 0.5 showed that
as the Rayleigh number increases, the Nusselt F1G. 15. Axial variations of the wall tempertures of UHF.
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number, the quantity of flow, and the maximum vel-
ocity increase. However, with increasing Rayleigh
number the minimum temperature at the exit
decreases. The comparison between the measurements
and the numerical results shows close agreement.
From the plot of the average Nusselt number versus
Rayleigh number for different aspect ratios (Fig. 8),
it is noted that for Ra > 10° the effect of the aspect
ratio is small, while for Ra < 107 it is significant.

Comparison of the average Nusselt numbers for the
obstructed channel with those for the unobstructed
channel shows a reduction in heat transfer for the
obstructed channel which ranges from 5% at a Ray-
leigh number of 10 to 40% at a Rayleigh number of
10.

It is found that moving the obstruction along the
wall from the leading edge to the exit causes a
reduction in the heat transfer rate in the channel.
Moving the obstruction from the location L,/L =
0.25 to L,/L = 0.5 resulted in a reduction of about
16% in the magnitude of the average Nusselt number.

For the vertical channel whose walls are heated
uniformly, the presence of the obstruction increased
the magnitude of the maximum temperature by 4%.
The maximum temperature occurred at the corner at
the top of the obstruction and not at the exit as is the
case for unobstructed channels.

Finally, virtually nothing was previously known
about the detailed nature of obstructed natural con-
vection flows in channels. Based on the present inves-
tigation, however, we can conclude that the presence
of an obstruction and its location have significant
effects on natural convection flows in vertical
channels. This is an open-ended research area. Hope-
fully, the present study will serve to whet the appetite
of other investigators to become involved in this area
of research. The effect of different obstruction geome-
tries and locations with different thermal boundary
conditions needs to be investigated both exper-
imentally and numerically. Multiple obstruction and
obstruction on both walls also need investigation.
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RECHERCHE ANALYTIQUE ET EXPERIMENTALE SUR LA CONVECTION
THERMIQUE NATURELLE DANS DES CANAUX VERTICAUX AVEC UNE
OBSTRUCTION UNIQUE

Résumé—On étudie expérimentalement et numériquement la convection thermique naturelle laminaire de
I'air dans un canal vertical ayant une seule obstruction. Dans I’étude expérimentale, on utilise les techniques
optiques pour obtenir a la fois des données quantitatives (flux thermiques et températures) et qualitatives
(visualisation de I’écoulement). On ne considére que des conditions de température pariétales uniformes
(UWT) dans les experiences. Dans les calculs, on utilise un code général aux éléments finis appelé NACHOS
et on considére des conditions aux limites de température pariétale uniforme (UWT) et de flux uniforme
(UHF). Les résultats expérimentaux et numeériques sont en bon accord. 1ls montrent que pour les conditions
UWT, la présence d’une obstruction réduit de 5% le nombre de Nusselt moyen a un nombre le Rayleigh
de 10* et de 40% environ lorsque le nombre de Rayleigh est égal a 10. Quand I'obstruction est déplacée
depuis I'entrée jusqu’a la sortie, le coefficient moyen de convection diminue. Pour les conditions UHF, la
température maximale (a I'intersection du bord supérieur de la cloison et de la paroi) est seulement de 4%
plus grande que la température maximale pour un canal sans obstruction (elle apparait a la sortie du
canal).

. ANALYTISCHE UND EXPERIMENTELLE UNTERSUCHUNG DES .
WARMEUBERGANGS BEI NATURLICHER KONVEKTION IN SENKRECHTEN KANALEN
MIT EINEM HINDERNIS

Zusammenfassung— Die laminare natiirliche Konvektionsstrdmung von Luft in einem senkrechten Kanal
mit einem einzelnen Hindernis wurde experimentell und numerisch untersucht. In den Experimenten
wurden optische Verfahren angewandt zur Ermittlung quantitativer (Wirmestrome und Temperaturen)
und qualitativer Ergebnisse (Sichtbarmachung der Strémung). Bei den Versuchen wurde mit konstanter
Wandtemperatur gearbeitet. Fiir die numerische Untersuchung wurde ein allgemein anwendbares Finite-
Elemente-Programm mit Namen NACHOS verwendet. Numerisch wurden beide Randbedingungen. kon-
stante Wandtemperatur und konstanter Warmestrom, untersucht. Die experimentellen Ergebnisse stimmen
gut iiberein. Sie zeigen, daB bei aufgeprigter Wandtemperatur ein Hindernis die mittlere Nusselt-Zahl um
5% (fir die Rayleigh-Zahl 10*) bzw. um 40% (fiir die Rayleigh-Zahl 10) verringert. Auch die Lage des
Hindernisses in Strémungsrichtung beeinfluBt den Warmeiibergang. Er nimmt ab, wenn das Hindernis in
Richtung Kanalaustritt verschoben wird. Bei aufgeprigtem Wirmestrom ist die maximale Temperatur mit
Hindernis nur um 4% hdher als ohne Hindernis. Ohne Hindernis tritt sie am Kanalausgang auf, mit
Hindernis am Schnittpunkt von Hindernis und Wand.
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. AHAJIUTUYECKOE H 3KCNNTEPUMEHTAJIbBHOE UCCJIIEZOBAHHE
ECTECTBEHHOKOHBEKTHBHOI'O TEIUIOITEPEHOCA B BEPTHKAJIBHBIX KAHAJIAX
C OAUHOYHBIM MPENATCTBUEM

Amsoramms—IIpoBeAcHO IXCOCPAMEHTAIBHOC B YHCICHOE HCCICOOBAHHC JAMBHADHOH ecTecTpeHHOR
KOHBEKIMH BO3AYXa B BEPTHKANLHOM KaHAJIe C OMHOYHKM NPENITCTBHEM. B x04¢ 3xCcnepaMeRTATBHOTO
HOCJICIOBAHHA ¢ NOMOUILIO ONTHYECKHX MCETOL0B Obia MONYMCHA Kak KOJIHMMECTBCHHAN (TEILioBhie
OOTOKH H TEMICPaTYpHhi¢ MOJK), TaK H K3aueCTBCHHAA (BH3yasNbHAasx KapTHHA TeueHHA) HHPOpPMALHSA.
IKCOCPHMEHTH BHIUIHANHCH TOJABLKO M/IN MOCTOSHHBIX TEMMEPATYPHBIX TI'PaHMYHBIX YUIOBHE Ha
cTeHkax. JIIA 9HCNCHHOro HCCNCAOBAHMA HCIOB30BAIACH YHHBepcanbHas nporpamma NACHOS. Ipa
YHCCHHLIX PACYETaX PACCMATPHBAIHCH IBa TCIUIOBHIX FPAHHYHBLIX YCJIOBH: MOCTOSHHAS TeMIepaTypa
H nocTosHuM# Tennosol norox Ba creuxax. [Tonytero xopotuee corsiacHe IXCNCPHMEHTANIBHLIX # YHC-
JICHHBIX Pe3yNbTaToB. OHH NOKA3LIBAIOT, YTO B CJIy¥ae NOCTORHHOMN TeMMeEpaTyphi Ha CTCHKAX HATHIHE
HNPENSTCTBHA NPHBOMMT K YMCHBIICHHIO CPEOHEro 3HaveHua wHcna HyccensTa Ha 5% npH JHAYCHHH
uucna Pases 10* u Ha 40% npm 3HaueHun wucna Panes 10. 3ameueHO Takxe, TO PACHONOMCHHE
OPENATCTBHR BAO/Ab CTCHKH NMPHBOJHT X H3IMCHCHMIO MHTEHCHBHOCTH TemonepeHoca. [Tepememenne
OPEnATCTBHA OT BXOJA K BRIXOAY BHI3BIBACT YMCHbIUICHHC CPelHcHl HHTCHCHBHOCTH TCIUIONEPEHOCA [UIA
KaHana. B ciyvae mOCTOAHHOrO TEILIOBOrO MOTOKA HA CTEHXAX MaxCHMasbHas TeMncpatypa (koTopas
JIOCTHIAeTCA Ha TMEPECEYEHHH BEPXHETO Xpas NPEUATCTBHA H CTCHKH) NHIIb HAa 4% GoJsbllle MaKCHMaJThb-
Hoft TeMnepaTyphl B xasasie Ge3 mpenaTcTBHg (B XKOTOPOM OHA JOCTHT4CTCA Ha BhIXOIC).



